804 research outputs found

    Evolutionary history of four binary blue stragglers from the globular clusters \omega Cen, M55, 47 Tuc and NGC 6752

    Full text link
    Context. Origin and evolution of blue stragglers in globular clusters is still a matter of debate. Aims. The aim of the present investigation is to reproduce the evolutionary history of four binary blue stragglers in four different clusters, for which precise values of global parameters are known. Methods. Using the model for cool close binary evolution, developed by one of us (KS), progenitors of all investigated binaries were found and their parameters evolved into the presently observed values. Results. The results show that the progenitors of the binary blue stragglers are cool close binaries with period of a few days, which transform into stragglers by rejuvenation of the initially less massive component by mass transfer from its more massive companion overflowing the inner critical Roche surface. The parameters of V209 from \omega Cen indicate that the binary is substantially enriched in helium. This is an independent and strong evidence for the existence of the helium rich subpopulation in this cluster.Comment: Accepted by Astronomy and Astrophysic

    The radio lighthouse CU Virginis: the spindown of a single main sequence star

    Get PDF
    The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosyncrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100% circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a timescale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provides us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 minutes. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre main sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio
    • …
    corecore